

MATHEMATICS METHODS Year 11

Section Two: Calculator-assumed

Student name

Teacher name _____

Time and marks available for this section

Reading time before commencing work:	3 minutes
Working time for this section:	30 minutes
Marks available:	31 marks

Materials required/recommended for this section

To be provided by the supervisor This Question/Answer Booklet Formula Sheet (retained from Section One)

To be provided by the candidate

Standard items: pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters

Special items: drawing instruments, templates, and up to three calculators approved for use in the WACE examinations

Important note to candidates

No other items may be taken into the examination room. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

Instructions to candidates

- 1. Write your answers in this Question/Answer Booklet.
- 2. Answer all questions.
- 3. You must be careful to confine your response to the specific question asked and to follow any instructions that are specific to a particular question.

2

- 4. Supplementary pages for the use of planning/continuing your answer to a question have been provided at the end of this Question/Answer booklet. If you use these pages to continue an answer, indicate at the original answer where the answer is continued, i.e. give the page number.
- 5. **Show all your working clearly**. Your working should be in sufficient detail to allow your answers to be checked readily and for marks to be awarded for reasoning. Incorrect answers given without supporting reasoning cannot be allocated any marks. For any question or part question worth more than two marks, valid working or justification is required to receive full marks. If you repeat an answer to any question, ensure that you cancel the answer you do not wish to have marked.
- 6. It is recommended that **you do not use pencil**, except in diagrams.

(2 marks)

The profit in dollars of a Perth company t years after the 1st of January 2007 is given by P(t). Give an expression for the average rate of change of the profit of the company between 1st of January 2009 and 1st of January 2018.

(4 marks)

A group of students conducted a science experiment on cooling rates. They measured the temperature $T \,^{\circ}C$ of some liquid in a container over a period of time *t* minutes. The results are shown in the table below:

4

time (t minutes)	3	6	9	12	15	18	21
Temperature	71.5	59	49	40.7	34	28	23.5
(T °C)							

(a) Give an exponential model equation for this data in the form $T = a \times b^{t}$. (2 marks)

(b) If the room temperature for the experiment was 15°*C*, calculate how long it took for the cooling of the liquid to cease. (2 marks)

(4 marks)

The graph below shows the curve y = f(x). The points *A*, *B* and *C* all lie on the curve. The tangent lines at the points *A*, *B* and *C* are also shown on the graph.

Calculate the following:

(a) The average rate of change of f(x) from A to C. (1 mark)

(b) The instantaneous rate of change of f(x) at B. (1 mark)

(c) The equation of the tangent line of f(x) at B. (2 marks)

(4 marks)

Question 8

If y = f(x) then finding $\frac{dy}{dx}$ from first principles involves calculating:

$$\lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} \right)$$

6

Calculate $\frac{dy}{dx}$ from first principles if $f(x) = \frac{1}{1+x^2}$

1

(4 marks)

Radioactive materials decay so that the amount of radioactive material A present at time t (where t is in years) is given by the function:

 $A = A_0 \, 2^{-kt}$

7

where A_0 is the initial amount and k is a positive constant that depends on the type of material. The half-life of the material is the time required for half the material to decay.

Carbon-14 is a radioactive substance with a half-life of 5730 years. A Babylonian cloth fragment now has 40% of the carbon-14 that it contained originally. How old is the cloth fragment? Give your answer rounded to the nearest 100 years.

(6 marks)

A piece of wire 60 *cm* long is cut into two pieces. One piece is bent into a square shape and the other into a rectangle shape whose length is seven times its width. **Clearly show the use of calculus techniques at each stage** to determine the width of the rectangle that will minimise the sum of the areas of the two shapes.

At the beginning of an experiment there are 30 bacteria in a culture. After 90 minutes there are 1920 bacteria in the culture. What is the doubling period of the bacteria?

(2 marks)

(5 marks)

A function f(x) satisfies **all** of the following properties:

- x + 3 and x 5 are both factors of f(x)
- f(0) = 3
- f'(-2) = 0 and f'(1) = 0
- f'(x) > 0 for x < -2, 1 < x < 3
- f(3) is undefined

On the axes below, draw the graph of f(x).

11

Additional working space

Question number:_____

12

Additional working space

Question number:_____